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Abstract
The key parameters that characterize the long wavelength behaviour of
correlation functions, including the Fermi momenta and the correlation length,
are calculated using the transfer matrix renormalization group for the one-
dimensional Kondo lattice model. The Fermi momentum varies slowly at
high temperatures, but changes sharply at low temperatures in association with
the formation of the Kondo singlets. By comparison with the temperature
dependence of the conduction electron density, we find that the long wavelength
correlations of conduction electrons are strongly affected by the localized spins
at low temperatures. At high temperatures, the conduction electrons behave as
for a system with a small Fermi surface. However, at low temperatures, the
Fermi momentum of the conduction electrons is altered by the coupling with
the localized spins.

Investigations on heavy fermion systems have attracted great attention in the past two
decades [1, 2]. In these systems, two kinds of electrons are involved: conduction electrons
in outer unfilled orbitals and localized electrons in inner filled orbitals. The former form a
conduction band in a periodic lattice, while the latter, weakly hybridized with the former, are
highly correlated. The heavy fermions are realized in the Kondo regime where the mobility
of the electrons in the inner orbitals is greatly reduced by a large level splitting. In a mixed
valence regime with a relatively small level splitting, the periodic Anderson model (PAM) is
an appropriate starting point [3]. In a Kondo regime, the low-energy physics of the periodic
Anderson model can be effectively described by the Kondo lattice model (KLM) [4] up to the
second order of perturbation [5].

In one dimension, the KLM has been studied using the exact diagonalization [6, 7], density
matrix renormalization group [8] as well as other methods [9]. It was found that the 1D KLM
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consists of three phases [2]: a Kondo insulator phase at half-filling, a ferromagnetic (FM)
metallic phase at low doping and strong coupling, and a paramagnetic (PM) metallic phase.
The former two phases are relatively well understood. The ferromagnetic state is characterized
by a non-zero magnetization. The Kondo insulator is a spin liquid with gapped spin and charge
excitations. However, the PM metallic phase has been less clearly explored.

In the PM phase, an issue of great interest is whether the Fermi surface of the KLM is purely
determined by the conduction electrons or contains the contribution from the localized spins.
This is the so-called small or large Fermi surface problem. If only the conduction electrons
have a contribution to the Fermi sea volume, then the Fermi momentum kF is given by

kF = π

2
nc, (1)

where nc is the conduction electron concentration per site. However, if we take the KLM as
an effective model of the PAM in the strong coupling limit, we would also expect the localized
spins to have a contribution to kF since the conduction electrons are entangled with d electrons.
In this case, the Fermi momentum is determined by both conduction and localized electrons:

kF = π

2
(nc + nd) = π

2
(nc + 1), (2)

where nd = 1 is the number of localized spins at each site.
This problem of large or small Fermi momentum has been extensively studied in recent

years. In particular, Shiba and Fazekas showed that the Fermi momentum is given by
equation (2) from a variational calculation with a Gutzwiller-type trial wavefunction [9]. Their
result was supported by a numerical analysis of the Friedel oscillations of an edge state on
finite-lattice systems [10], and a number of other calculations [7, 8, 11]. However, all these
studies were performed on finite lattice systems and there is a rather big uncertainty in the
determination of the Fermi momentum. Recently, Yamanaka et al [12] showed rigorously that
there is gapless excitation in the density–density channel at a momentum twice that given by
equation (2). Their result implies that the Fermi surface is large. Although these investigations
have been performed on this problem,numerical simulations without the finite lattice size effect
are helpful.

The Fermi momentum is associated with low energy excitations. It determines the long
wavelength behaviour of correlation functions of electrons. In a finite lattice system, the
singular behaviour of the momentum distribution or other correlation functions of electrons at
the Fermi surface is smeared out by the finite size effect. This is the difficulty in determining the
value of Fermi momentum accurately from finite size calculations. To resolve this difficulty,
we have calculated the single particle correlation function of the 1D KLM using the transfer
matrix renormalization group (TMRG) method [13–15].

The TMRG is a finite temperature extension of the density matrix renormalization group
(DMRG) method [16]. It can handle an infinite lattice system directly. With this method, one
can calculate the Fermi momentum directly, without being bothered by the finite lattice size
effect.

The Kondo lattice model is defined by the Hamiltonian

HK =
∑

i

Hi (3)

Hi = −t
∑
σ

(c†
iσ ci+1σ + h.c.) + JSc

i · Sd
i , (4)

where ciσ is the annihilation operator of conduction electrons. Sc
i and Sd

i are the spin operators
for conduction and localized electrons, respectively. The exchange interaction between
conduction and localized electrons is assumed to be antiferromagnetic (J > 0).
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The TMRG is based on the Trottor–Suzuki decomposition and a quantum transfer matrix
representation of the partition function:

Z = Tr e−βH = Tr T N/2
M + O(ε2) (5)

where ε = β/M and N is the lattice length. A similar quantum transfer matrix representation
of the partition function has been used to numerically study the integrable models [17–20].
The quantum transfer matrix TM in equation (5) is a product of 2M local transfer matrices and
is defined by the following equation:

〈s3|TM |s1〉 =
∑

s2

N/2∏
i

τ (s3
2i+1s3

2i |s2
2i+1s2

2i )τ (s
2
2i s

2
2i−1|s1

2i s
1
2i−1), (6)

where sα = {sα1 , . . . , sαN } and sαi is a basis state at site i , including both localized spins and
conduction electrons. The local quantum transfer matrix τ is defined by

τ (sα+1
i sα+1

i+1 |sαi sαi+1) = 〈sα+1
i+1 , sαi+1|e−εHi |sαi , sα+1

i 〉.
In the limit N → ∞, it is readily shown that the partition function is determined purely by the
largest eigenvalue of the quantum transfer matrix λmax:

Z |N→∞ = λN/2
max + O(ε2). (7)

Thus only the maximum eigenvalue needs to be evaluated for investigating thermodynamic
quantities.

In the TMRG, it is straightforward to evaluate the thermal average of a local operator
with the maximum eigenvector of TM . For instance, the average of the number of conduction
electrons per site can be computed using the following formula:

nc = lim
N→∞ Tr(n̂i e

−βH ) = 1

λmax

〈
ψL

max

∣∣ TM (n̂i )
∣∣ψR

max

〉
, (8)

where n̂i = ∑
σ c†

iσ ciσ , and ψL
max and ψR

max are the maximum left and the right eigenvectors
of TM , respectively. The matrix TM (n̂i ) is defined similarly to TM , except that one of the local
transfer matrices in equation (6) is replaced by

τn(s
α+1
i sα+1

i+1 |sαi sαi+1) = 〈sα+1
i+1 , sαi+1|n̂i e

−εHi |sαi , sα+1
i 〉.

The TMRG can also be used to evaluate the correlation length as well as the characteristic
wavevector of a correlation function. In particular, the Fermi momentum can be determined
from the long range particle–particle correlation function. Similarly to nc, it can be shown
that the single-particle correlation function in the thermodynamic limit is determined by the
following equation [14, 15]:

〈c†
iσ c jσ 〉 =

〈
ψL

max

∣∣ TM (c
†
iσ )T

[ j ]−[i]−1
M TM (c jσ )

∣∣ψR
max

〉
λ

[ j ]−[i]+1
max

,

where [i ] is an integer equal to i/2 when i is even, and (i + 1)/2 otherwise. TM(c
†
iσ ) and

TM (c jσ ) are similarly defined as for TM (n̂i). In the limit | j − i | → ∞, the above equation can
be simplified as

〈c†
iσ c jσ 〉 = Ai j

(
λα

λmax

)[ j ]−[i]

, (9)

where

Ai j = 〈ψL
max|TM(c

†
iσ )|ψR

α 〉〈ψL
α |TM (c jσ )|ψR

max〉
λmaxλα

,
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Figure 1. The characteristic wavevector k of the one-particle correlation function and πnc/2 as a
function of temperature for the 1D Hubbard model with t = 1, U = 2 and µ = −1. ε = 0.1 and
200 states are retained in the TMRG iteration.

and λα is the next largest eigenvalue of TM that satisfies the condition Ai, j �= 0. ψL,R
α are the

corresponding eigenvectors of λα .
The maximum eigenvalue λmax of TM is always positive. However, λα is complex in

general. Assuming λα = |λα|e2ik , then the above correlation function has the following
asymptotic form:

〈c†
iσ c jσ 〉| j−i|→∞ = Ai j e−(ξ−1−ik)| j−i|, (10)

where ξ is the thermal correlation length

ξ−1 = 1

2
ln

∣∣∣∣λmax

λα

∣∣∣∣ (11)

and k is a characteristic wavevector of single particle excitations. At zero temperature, k is
just the Fermi momentum kF of the system, i.e.

kF = lim
T →0

1
2 arg(λα) + nπ, (12)

where n = 0 or 1. Thus by evaluating the phase of λα at low temperatures, we can determine
the Fermi momentum of the electrons.

The transfer matrix is asymmetric. The associated reduced density matrix is also
asymmetric. This is a key difference between the TMRG and the zero temperature DMRG.
Numerically, it is rather challenging work to evaluate λα since it is much more difficult to
handle a non-symmetric matrix than a symmetric one, especially when a complex eigenvalue
is evaluated.

The Fermi momentum is defined at zero temperature. To understand better how the
characteristic wavevector k approaches the Fermi momentum at low temperatures, we have
first evaluated the temperature dependence of k for the Hubbard model:

H = t
∑
i,σ

(c†
iσ ci+1σ + h.c.) + U

∑
i

ni↑ni↓. (13)

In the Hubbard model, since there are only conduction electrons, equation (1) is expected
to hold at zero temperature. Our numerical results, as shown in figure 1, do agree with this



Fermi momenta of the one-dimensional Kondo lattice 5167

T/t

k 
or

 π
n c

/2

k

πnc/2

1.6

0

0.4

0.8

1.2

0 2 4 6 8

Figure 2. The characteristic Fermi wavevector of the single-particle correlation function k and
πnc/2 as functions of temperature for the KLM with t = 1, J = 2 and µ = −1. ε = 0.05 and
150 states were retained in the TMRG iteration.
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Figure 3. Comparison of the characteristic wavevector of the k as well as nc for the KLM (with
t = 1, J = 2 and µ = −1) and the Hubbard model (with t = 1, U = 2 and µ = −1).

conclusion. With fixed chemical potential, we find that the temperature dependence of nc is
different from that of k. In particular, the characteristic wavevector k is not proportional to
the electron concentration at finite temperatures. The variation of k with temperature is much
smaller than nc, especially at high temperatures. However, at low temperatures, k tends to
approach to πnc/2, as expected.

Figure 2 shows the numerical results for the KLM. When t = 1 and µ = −1, nc and k
show nearly the same temperature dependence as for the Hubbard model with the same t andµ,
except at low temperatures. These similar behaviours are explicitly shown in figure 3. If only
the high temperature results for k and nc are considered, we would not see much difference
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Figure 4. The correlation length as a function of temperature. The parameters of the Hubbard
model and the KLM are the same as for figures 1 and 2, respectively.

between the KLM and the Hubbard model. This is not surprising since at high temperatures
the conduction electrons are effectively decoupled with the localized spins for the KLM.

At low temperatures, the physics governing low-lying excitations is different in the two
models. In the KLM, the coupling between conduction electrons and localized spins becomes
stronger and stronger with decreasing temperature. This causes the formation of the Kondo
singlet below the so-called Kondo temperature TK. The sharp downturn of k in figure 2
is an indication of the onset of the Kondo physics. It shows that the Fermi momentum
of the conduction electrons is altered by the formation of the Kondo singlets. This means
that equation (1) is no longer valid in the zero temperature limit. Thus the long wavelength
correlation of electrons is not governed by the low-lying excitation around the momentum
determined by equation (1) in the Kondo lattice at low temperatures. However, due to technical
difficulties, we are still unable to evaluate the wavevector k accurately down to very low
temperatures and to give a firm confirmation of equation (2).

Figure 4 shows the correlation length as a function of temperature for both the KLM
and the Hubbard model. For the parameters used, the correlation length of the KLM is
much shorter than that for the Hubbard model. While the correlation length of the Hubbard
model increases with decreasing temperature, it varies non-monotonically in the KLM. For the
Hubbard model, the correlation length diverges at zero temperature. The monotonic increase
of the correlation length with temperature as shown in this figure is consistent with this
expectation. In accord with the sharp behaviour of the characteristic wavevector, a broad
peak appears in the correlation length curve of the KLM. This peak is due to the competition
between the kinetic energy and the formation of the Kondo singlets. This is an indication of the
crossover from a kinetic energy dominant phase to a Kondo phase. At very low temperatures,
the KLM is a Luttinger liquid and the correlation length of the KLM is expected to diverge.
Our result does not show any sign of the divergency because the temperature we have studied
is still not low enough.

In summary, the Fermi vector and the correlation length of the one-particle correlation
function of the KLM are evaluated and compared with those of the Hubbard model, using the
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transfer matrix renormalization group. Our results show that, at low temperatures, the Fermi
volume of the KLM is strongly affected by the localized spins and determined not purely by the
conduction electrons. At high temperatures, the local spins are decoupled with the conduction
electrons and the Fermi volume is determined by the conduction electrons, similarly as for the
Hubbard model. This is the first TMRG calculation for the complex eigenvalues of the transfer
matrix. It shows that the TMRG is a powerful tool for determining the Fermi momentum and
other parameters associated with low-lying excitations.
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